Group Introduction: Difference between revisions

From yangwa
No edit summary
No edit summary
Line 58: Line 58:
         <strong>A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns</strong>.   
         <strong>A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns</strong>.   
         <em style="color: #007BFF;">Nature Nanotechnology</em>. 19, pages1366–1374 (2024)
         <em style="color: #007BFF;">Nature Nanotechnology</em>. 19, pages1366–1374 (2024)
        <a href="/files/paper1.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 64: Line 63:
         <strong>Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force</strong>.   
         <strong>Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force</strong>.   
         <em style="color: #007BFF;">Nature Communications</em>. 15, 465 (2024)
         <em style="color: #007BFF;">Nature Communications</em>. 15, 465 (2024)
        <a href="/files/paper2.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 70: Line 68:
         <strong>Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges</strong>.   
         <strong>Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges</strong>.   
         <em style="color: #007BFF;">ACS Nano</em>. 17, 6565–6574 (2023)
         <em style="color: #007BFF;">ACS Nano</em>. 17, 6565–6574 (2023)
        <a href="/files/paper3.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 76: Line 73:
         <strong>Curbing Exosome Communications for Metastatic Pancreatic Cancer Therapy</strong>.   
         <strong>Curbing Exosome Communications for Metastatic Pancreatic Cancer Therapy</strong>.   
         <em style="color: #007BFF;">Advanced Materials</em>. 35, 2303736 (2023)
         <em style="color: #007BFF;">Advanced Materials</em>. 35, 2303736 (2023)
        <a href="/files/paper4.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 82: Line 78:
         <strong>Pancreatic tumor eradication via selective Pin1 inhibition in CAFs and T cells</strong>.   
         <strong>Pancreatic tumor eradication via selective Pin1 inhibition in CAFs and T cells</strong>.   
         <em style="color: #007BFF;">Nature Communications</em>. 13, 4308 (2022)
         <em style="color: #007BFF;">Nature Communications</em>. 13, 4308 (2022)
        <a href="/files/paper5.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 88: Line 83:
         <strong>Myeloid-specific topoisomerase 1 inhibition using DNA origami mitigates neuroinflammation</strong>.   
         <strong>Myeloid-specific topoisomerase 1 inhibition using DNA origami mitigates neuroinflammation</strong>.   
         <em style="color: #007BFF;">EMBO Reports</em>. 23: e54499 (2022)
         <em style="color: #007BFF;">EMBO Reports</em>. 23: e54499 (2022)
        <a href="/files/paper6.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 94: Line 88:
         <strong>DNA Origami Penetration in Cell Spheroid Models Enhanced by Wireframe Design</strong>.   
         <strong>DNA Origami Penetration in Cell Spheroid Models Enhanced by Wireframe Design</strong>.   
         <em style="color: #007BFF;">Advanced Materials</em>. 33, 2008457 (2021)
         <em style="color: #007BFF;">Advanced Materials</em>. 33, 2008457 (2021)
        <a href="/files/paper7.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 100: Line 93:
         <strong>Clustering of Death Receptor for Apoptosis Using Nanoscale Patterns of Peptides</strong>.   
         <strong>Clustering of Death Receptor for Apoptosis Using Nanoscale Patterns of Peptides</strong>.   
         <em style="color: #007BFF;">ACS Nano</em>. 15, 9614–9626 (2021)
         <em style="color: #007BFF;">ACS Nano</em>. 15, 9614–9626 (2021)
        <a href="/files/paper8.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
       <li>
       <li>
Line 106: Line 98:
         <strong>Spatial organization-dependent EphA2 transcriptional responses</strong>.   
         <strong>Spatial organization-dependent EphA2 transcriptional responses</strong>.   
         <em style="color: #007BFF;">Nucleic Acid Research</em>. 48, 5777–5787 (2020)
         <em style="color: #007BFF;">Nucleic Acid Research</em>. 48, 5777–5787 (2020)
        <a href="/files/paper9.pdf" style="margin-left: 10px; color: #007BFF;" target="_blank">📄 查看PDF</a>
       </li>
       </li>
     </ol>
     </ol>
   </div>
   </div>
</div>
</div>

Revision as of 14:26, 19 April 2025

SynBio Pharmaceutical Lab

We engineer programmable therapeutic systems at the intersection of synthetic biology and nucleic acid nanotechnology.

合成生物药物实验室专注于可编程治疗策略的构建,融合 DNA/RNA origami、基因电路与药物递送系统,推动精准药物与未来药剂学的发展。

Lab Members

     <img src="/path/to/wangyang.jpg" alt="Wang Yang" style="width: 120px; height: 120px; border-radius: 50%; object-fit: cover;">
王蛘
Professor, PI
     <img src="/path/to/xieguangneng.jpg" alt="谢广能" style="width: 120px; height: 120px; border-radius: 50%; object-fit: cover;">
谢广能
Graduate Student
     <img src="/path/to/xuanran.jpg" alt="徐安然" style="width: 120px; height: 120px; border-radius: 50%; object-fit: cover;">
徐安然
Graduate Student

Team Photo

   <img src="/path/to/team-photo.jpg" alt="Group Photo" style="max-width: 100%; border-radius: 12px;">

Contact

   Address: [Your Lab Address Here]
Email: [youremail@example.com]
Tel: +[Your Phone Number]

Collaborators

   <img src="/path/to/institute1-logo.png" alt="Institute 1" style="height: 60px;">
   <img src="/path/to/institute2-logo.png" alt="Institute 2" style="height: 60px;">

Publications

  1. Wang Yang, Igor Baars, ... A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns. Nature Nanotechnology. 19, pages1366–1374 (2024)
  2. Ioanna Smyrlaki, Ferenc Fördős, ... Wang Yang, ... Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force. Nature Communications. 15, 465 (2024)
  3. Marco Lolaico, ... Wang Yang, Björn Högberg*. Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges. ACS Nano. 17, 6565–6574 (2023)
  4. Miao Deng, Rong Guo, Wang Yang, ... Curbing Exosome Communications for Metastatic Pancreatic Cancer Therapy. Advanced Materials. 35, 2303736 (2023)
  5. Jiaye Liu#, Wang Yang# ... Pancreatic tumor eradication via selective Pin1 inhibition in CAFs and T cells. Nature Communications. 13, 4308 (2022)
  6. Keying Zhu, Wang Yang, ... Myeloid-specific topoisomerase 1 inhibition using DNA origami mitigates neuroinflammation. EMBO Reports. 23: e54499 (2022)
  7. Wang Yang, Erik Benson, ... DNA Origami Penetration in Cell Spheroid Models Enhanced by Wireframe Design. Advanced Materials. 33, 2008457 (2021)
  8. Wang Yang, Igor Baars, ... Clustering of Death Receptor for Apoptosis Using Nanoscale Patterns of Peptides. ACS Nano. 15, 9614–9626 (2021)
  9. Toon Verheyen, Wang Yang, ... Spatial organization-dependent EphA2 transcriptional responses. Nucleic Acid Research. 48, 5777–5787 (2020)